-
-
- 您现在的位置:首页 >> 产品中心 >> 标准物质 >> 加拿大矿产科学室(CCRMP)加拿大矿产科学室(CCRMP)
-
-
中文名称:金尾矿成分分析标准物质
英文名称:Gold Tailings订货以英文名称为准。
产品编号:GTS-2aCAS:/
品牌:CCRMP产地:加拿大
标准值:见证书分子式:/
规格 市场价(元) 折后价(元) 供货周期 数量 加入购物车 350g 0.00 0.00 3-4周 加入购物车
-
-
产品详细介绍
GTS-2a金尾矿成分分析标准物质Gold Tailings
Table 1 - GTS-2a Certified Values
Element Units Mean Within-lab Standard Deviation Between-labs Standard Deviation 95% Confidence Interval of Mean
Al (no AD2)a % 6.96 0.11 0.22 0.12
As µg/g 124 4 11 5
Au (FA)b µg/g 0.272 0.009 0.011 0.005
Ba (no AD2)a µg/g 186 8 14 7
C % 2.011 0.021 0.063 0.041
Ca % 4.01 0.09 0.14 0.06
Co µg/g 22.1 0.8 1.7 0.7
Cu µg/g 88.6 2.9 6.1 2.5
Fe % 7.56 0.13 0.26 0.11
K (no AD2)a % 2.021 0.036 0.064 0.035
Mg (no AD2)a % 2.412 0.038 0.075 0.038
Mn µg/g 1510 30 120 50
Na (no AD2)a % 0.617 0.016 0.063 0.033
Ni µg/g 77.1 2.9 9.1 3.7
P % 0.0892 0.0030 0.0084 0.0036
S % 0.348 0.009 0.028 0.014
Si % 23.65 0.14 0.21 0.16
Sr (no AD2)a µg/g 92.8 2.2 6.0 3.2
Th (no AD2)a µg/g 1.244 0.125 0.090 0.076
Zn µg/g 208 7 21 9
Sets with digestions by two acids, usually hydrochloric and nitric acids, were excluded as method outliers based on statistical tests.
Fire assay techniques only i.e. sets by digestion excluded as statistical outliers.
Table 2 - GTS-2a Provisional Values
Analyte Units Mean Within-lab Standard Deviation Between-labs Standard Deviation 95% Confidence Interval of Mean
Al (AD2)a,b % 1.80 0.07 0.12 0.13
Be (no AD2)a,c µg/g 0.882 0.049 0.044 0.052
Cde µg/g 0.58 0.10 0.21 0.12
Ce (no AD2)c µg/g 24.35 0.86 0.50 0.49
Ga (no AD2)c µg/g 21.1 0.7 3.6 2.6
Hg µg/g 0.220 0.028 0.047 0.036
La (no AD2) µg/g 9.44 0.31 0.62 0.49
LOIf % 9.87 0.04 0.25 0.19
Mg (AD2)a,b % 2.173 0.048 0.095 0.102
Mo µg/g 3.84 0.27 0.21 0.21
Nd (no AD2)a,c µg/g 16.57 0.56 0.71 0.79
Pb µg/g 17.9 1.4 5.7 2.6
Pra µg/g 3.45 0.12 0.18 0.20
Rb (no AD2)c µg/g 57.7 1.5 2.3 2.0
Sb (no AD2)c µg/g 1.33 0.13 0.13 0.11
Sc (no AD2)c µg/g 29.3 0.7 3.0 2.0
Sm µg/g 4.58 0.11 0.44 0.37
Sr (AD2)a,b µg/g 63.2 1.5 1.8 2.0
Te µg/g 1.64 0.30 0.46 0.30
Ti (FUS)d µg/g 0.500 0.006 0.013 0.010
V (no AD2)c µg/g 166 6 30 17
Yb (T)a,g µg/g 4.41 0.12 0.21 0.23
W (no AD2)c µg/g 25.8 1.2 6.7 4.5
Zr (no AD2)c µg/g 114 6 26 15
Statistical analysis of the data warrants classification as provisional despite only 6 sets of data.
Includes digestion by two acids only, usually hydrochloric and nitric.
Sets by digestion by two acids, usually hydrochloric and nitric acids, excluded as method outliers based on statistical tests.
Includes fusions only.
Data fulfilled the conditions for certification, but the element was re-classified as provisional since much of the data had one significant figure.
Loss on ignition for a sample of 1-2 g for 0.25 - 3 hour at a temperature of 900 to 1050°C.
Includes only total recovery (T) methods such as digestion by four acids in a closed beaker, various fusions and instrumental neutron activation analyses; the exclusion of sets by acid digestions in an open beaker as method outliers was based on statistical tests.
Table 3 - GTS-2a Informational Values
Element Units Mean No. accepted laboratories / values Element Units Mean No. accepted laboratories / values
Ag µg/g 0.64 11 / 51 Na (AD2)b % 0.015 5 / 26
Au (AD2,4)a µg/g 0.25 3 / 14 Nb (no AD2)d µg/g 4 7 / 34
Bi µg/g 0.3 7 / 34 Pd µg/g 0.002 3 / 15
Cr (AD2)b µg/g 140 7 / 37 Sn µg/g 1 7 / 34
Cr (T)c µg/g 270 5 / 25 Ta µg/g 0.3 3 / 15
Cs (no AD2)d µg/g 1.7 5 / 24 Tb (T)c µg/g 1.1 5 / 25
Dy (T)c µg/g 7 4 / 20 Ti (AD3,4) % 0.3 7 / 34
Er (T)c µg/g 4.4 4 / 20 Tl (AD4) µg/g 0.40 5 / 24
Eu (T)c µg/g 1.5 5 / 25 Tm (T)c µg/g 0.66 4 / 20
Gd (T)c µg/g 6.3 4 / 20 U µg/g 0.4 3 / 15
Hf (T)c µg/g 3.5 6 / 30 V (AD2)b µg/g 50 4 / 20
Ho (T)c µg/g 1.5 4 / 20 W (AD2)b µg/g 12 4 / 20
Li µg/g 27 7 / 34 Y (T)c µg/g 38 6 / 30
Lu (T)c µg/g 0.7 6 / 30 Zr (AD2)b µg/g 5 4 / 20
Includes digestion by two acids, usually hydrochloric and nitric acids, and four acids only.
Includes digestion by two acids, usually hydrochloric and nitric acids.
Includes only total recovery (T) methods such as digestion by four acids in a closed vessel, various fusions and instrumental neutron activation analyses; the exclusion of sets by acid digestions in an open beaker as method outliers was based on statistical tests.
Digestion by two acids, usually hydrochloric and nitric acids, was excluded as a method outlier based on statistical tests.
Source
GTS-2a is a gold ore mill tailings obtained from a tailings dam at the Porcupine gold mine in Timmins, Ontario, Canada.The raw material was donated by Goldcorp Canada Limited, Porcupine Gold Mine. The raw material for GTS-2a was obtained from the same source as its predecessor, GTS-2.
Description
The mineral species include: quartz (33.5%); clinochlore (14.0%); K-feldspar (13.5%); ankerite (13.5%); muscovite (11.4%); albite (4.3%); calcite (2.1%); siderite (1.7%); biotite (1.2%); rutile and magnetite (both at 0.7%); pyrite and anorthite (both at 0.6%); various other trace minerals including several silicates, rare earths, arsenopyrite, sphalerite, chalcopyrite, melonite, altaite, graphite and gold (for a total of 0.6%); apatite (0.5%); pyrrhotite and Mg-ferrite (0.3%); talc, ilmenite and gypsum (all at 0.1%); and epidote (0.01%).
Intended use
GTS-2a is suitable for the analysis of various elements at major, minor and trace levels in tailings. Examples of intended use include quality control and method development.
Instructions for use
GTS-2a should be used “as is”, without drying. The contents of the bottle should be thoroughly mixed before taking samples. The values herein pertain to the material when produced. CanmetMINING is not responsible for changes occurring after shipment.
Handling instructions
Normal safety precautions for handling fine particulate matter are suggested, such as the use of safety glasses, breathing protection, gloves and a laboratory coat.
Method of preparation
The raw material was dried at 32°C, crushed, sieved to remove the plus 75 µm fraction. The recovery of the minus 75 µm fraction was 78%. The product was blended, and then bottled in 350-gram units.
Homogeneity
The homogeneity of the stock was investigated using fifteen bottles chosen according to a stratified random sampling scheme. Three subsamples were analyzed from each bottle. The gold in 30-g subsamples was concentrated using lead fire assay and analyzed using inductively coupled plasma – mass spectrometry. Each bottle in a second set of 15 randomly chosen bottles was subsamples into 8 subsamples and three subsamples were analyzed. Subsamples of 0.25g grams were digested using four acids, hydrofluoric, hydrochloric, nitric and perchloric acids, and analyzed for copper and nickel by inductively coupled plasma – atomic emission spectrometry and for lead by inductively coupled plasma – mass spectrometry. Subsamples of 0.15 grams from each of the 3 subsamples per bottle were analyzed for sulphur using a combustion apparatus with infrared detection. Use of a smaller subsample than specified above will invalidate the use of the certified values and associated parameters.